Contents lists available at ScienceDirect

Tetrahedron Letters

journal homepage: www.elsevier.com/locate/tetlet

Generation of hexahydroazulenes

Guido Krämer, Heiner Detert, Herbert Meier *

Institute of Organic Chemistry, University of Mainz, D-55099 Mainz, Germany

article info

Article history: Received 17 March 2009 Revised 12 May 2009 Accepted 13 May 2009 Available online 21 May 2009

ABSTRACT

(Z)-Cyclodec-1-en-6-yne (3) generates three conjugated hexahydroazulenes $3 \rightarrow 1k \rightarrow 1c$, 1 ℓ under FVP conditions, whereas flash vacuum pyrolysis (FVP) of cyclodecyne (2) leads to 1,2,9-decatriene (9). We attribute the different thermal behavior of 2 (ring opening) and 3 (ring closure) to different transannular interactions. Altogether 22 constitutional isomers of hexahydroazulene should exist; three new isomers $(1k, 1\ell,$ and $1m)$ are presented here, ten were described earlier, but the reinvestigation of the dehydration route of bicyclic alcohol 11 showed that one of the ten structures has to be revised.

© 2009 Published by Elsevier Ltd.

Partly hydrogenated azulenes (bicyclo [5.3.0]decenes, -decadienes, -decatrienes, etc.) are interesting starting compounds for the synthesis of polycycles. However, the majority of hydroazulenes are still unknown. Thus, for example, 22 hexahydroazulenes 1 should exist as constitutional isomers and, moreover, 16 of them should show stereoisomerism. Scheme 1 summarizes the 9 hexahydroazulenes **1a–i**, which are, to the best of our knowledge, presently known.¹⁻¹¹

Ten-membered carbocycles should be favorable precursors for the generation of hydroazulenes, because these medium-sized ring systems exhibit strong transannular interactions. In the previous years several oxidative transannular ring closures on the basis of cyclodecyne have been published.¹²⁻¹⁶ The high energy content of triple bonds makes cycloalkynes as interesting sources for ther-mal isomerization routes.^{[17](#page-2-0)} We present here the reactivity of cyclodecyne (2) and (Z)-cyclodec-1-en-6-yne (3) under flash vacuum pyrolysis (FVP) conditions.

Cyclodecyne (2) was prepared by oxidation of 1,2-cyclodecan-edione bis-hydrazone.^{[18–20](#page-2-0)} Scheme 2 summarizes the preparation of (Z)-cyclodec-1-en-6-yne (3). 6-Hydroxycyclodecanone (4), which exists in a tautomeric equilibrium with its hemiacetal 4^{\prime} ,^{[21,22](#page-2-0)} was transformed to the semicarbazone 5^{23} 5^{23} 5^{23} , whose bicyclic form is in DMSO below the NMR detection limit of 5%. Reaction with SeO $_2$ yielded selenadiazole $\boldsymbol{6}^{,24}$ $\boldsymbol{6}^{,24}$ $\boldsymbol{6}^{,24}$ which was dehydrated with $\mathrm{POCI}_3/\mathrm{pyridine}$ or $(\mathrm{PhO})_3\mathrm{PCH}_3^+$ I $^-/\mathrm{hexamethylphosphoramide}^{25}$ $^-/\mathrm{hexamethylphosphoramide}^{25}$ $^-/\mathrm{hexamethylphosphoramide}^{25}$ to yield $7.^{26}$ $7.^{26}$ $7.^{26}$ Both the processes are regio- and stereoselective. Among the possible products, 7 is the structure with the lowest strain.²⁷ Fragmentation of 7 on Cu powder gave the target compound $3.^{28}$ $3.^{28}$ $3.^{28}$

Cyclodecyne (2) does not give octahydroazulene 8^{29} 8^{29} 8^{29} under FVP conditions. It is selectively transformed at $600-650$ °C and 10 $^{-4}$ kPa into 1,2,9-decatriene (9).³⁰ A presumably non-concerted

Scheme [1](#page-2-0). Hexahydroazulenes 1: 1,2,3,3a,4,8a- $(1a)^1$, 1,2,3,3a,6,8a- $(1b)^1$, 1,2,[6](#page-2-0),7,8,8a- $(1c)^{2,3}$ $(1c)^{2,3}$ $(1c)^{2,3}$, 1,3a,[4](#page-2-0),6,8a- $(1d)^4$, 1,3a,6,7,8,8a- $(1e)^5$ $(1e)^5$, 1,4,5,6,7,8- $(1f)^6$ 1,5,6,[7](#page-2-0),8,8a- $(1g)^7$, 2,4,5,6,7,8- $(1h)^{8,9}$, 3a,4,5,6,7,8- $(1i)$.^{10,11}

[6e] process $2\rightarrow 9$ is favored in comparison to the [4e] process $2 \rightarrow 8$ [\(Scheme 3\)](#page-1-0).

Scheme 2. Preparation of (Z)-cyclodec-1-en-6-yne (3).

^{*} Corresponding author. Tel.: +49 6131 3922605; fax: +4961313925396. E-mail address: hmeier@mail.uni-mainz.de (H. Meier).

^{0040-4039/\$ -} see front matter © 2009 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2009.05.025

Scheme 3. Thermal isomerization of cyclodecyne (2). Related to the consumption of 2, the open-chain triene 9 is formed in a quantitative process.

(Z)-Cyclodec-1-en-6-yne (3) behaves different to 2. It does not form tetraene 10, its FVP yields hexahydroazulenes with conjugated double bonds. The transannular CC bond formation should first lead to $1j^{31}$, but 1*j* was not present in the product mixture in sufficient quantity to be identified. Fast secondary isomerizations (formal, presumably non-concerted [1,3-H] and [1,5-H] hydrogen shifts) furnished 1c, 1k, and 1 ℓ . The optimum reaction temperature was around 560 °C at 10^{–4} kPa (Scheme 4). At lower temperatures, the conversion is too low, at higher temperatures

Figure 1. GC of FVP of 3 at 560 °C (Carlo Erba HRGC 5160, column MN 3314-1).

too much decomposition occurs-solely the absolute yield of 1ℓ increases (Scheme 4). Figure 1 shows the gas chromatogram of the reaction mixture obtained at 560 °C. The connected ion trap indicated correct m/z values 134 for all three peaks.

In order to check the structure of the major product 1k, we repeated an early study of Anderson³² and dehydrated the bicyclic

 $sp²-C CH$ C_c

Table 1

Compound

 13 C NMR data of hexahydroazulenes in CDCl₃

Scheme 4. Thermal isomerization of (Z)-cyclodec-1-en-6-yne (3) to hexahydroazulenes.

 $sp³-C CH₂$ CH

Scheme 5. Dehydration of the bicyclic alcohol 11.

alcohol 11 with p-toluenesulfonic acid. It turned out that the reported product 1k was not formed at all. We got a 2:1:1-mixture of $1m$, 1ℓ , and $1h$ in a quantitative process (Scheme 5).

The $13C$ NMR data permit the unambiguous differentiation between the obtained hexahydroazulenes by symmetry, multiplicity, and chemical shift criteria [\(Table 1\)](#page-1-0).

A preparative GC separation of the two mixtures $1c/1k/1\ell$ and **1h/1** ℓ **/1m** seems to be easily feasible ([Fig. 1](#page-1-0)); however, both mixtures can be directly transformed on Pd/charcoal to azulene (12).

References and notes

- 1. Stanley, S. W.; Heyn, A. S. J. Am. Chem. Soc. 1975, 97, 3852–3854.
- 2. Boyer, F.-D.; Hanna, I. J. Org. Chem. **2005**, 70, 1077–1080.
3. Boyer, F.-D.: Hanna, I. Eur. I. Org. Chem. **2006**, 471–482.
- Boyer, F.-D.; Hanna, I. Eur. J. Org. Chem. 2006, 471-482.
- 4. Japenga, J.; Klumpp, G. W.; Kool, M. Rec. Trav. Chim. Pays-Bas 1978, 97, 7–9.
5. Gleiter. R.: Steuerle. U. Chem. Ber. 1989. 122. 2193–2204.
- 5. Gleiter, R.; Steuerle, U. Chem. Ber. 1989, 122, 2193–2204.
- 6. Dane, L. M.; De Haan, J. W.; Klosterziel, H. Tetrahedron Lett. 1970, 11, 2755– 2758.
- 7. Jost, R.; Chaquin, P.; Kossanyi, J. Tetrahedron Lett. 1980, 21, 465-466.
- 8. Vogt, T.; Winsel, H.; De Meijere, A. Synlett 2002, 1362–1364.
- 9. Dauphin, G.; David, L.; Kergomard, A.; Veschambre, H. Bull. Soc. Chim. Fr. 1970, 3162–3163.
- 10. Kossanyi, J.; Jost, P.; Furth, B.; Deccord, G.; Chaquin, P. J. Chem. Res. (M) 1980, 4601–4624.
- 11. Polo, E.; Bellabarba, R. M.; Prini, G.; Traverso, O.; Green, M. J. Organomet. Chem. 1999, 577, 211–218].
- 12. Wille, U.; Henger, G.; Jargstorff, C. J. Org. Chem. 2008, 73, 1413–1421.
- 13. Sigmund, D.; Schiesser, C. H.; Wille, U. Synthesis 2005, 1437–1444.
- 14. Dreessen, T.; Jargstorff, C.; Lietzau, L.; Plath, C.; Stademann, A.; Wille, U. Molecules 2004, 9, 480–497.
- 15. Jargstorff, C.; Wille, U. Eur. J. Org. Chem. 2003, 3173–3178.
- 16. Wille, U. J. Am. Chem. Soc. 2002, 124, 14–15.
- 17. Meier, H. Adv. Strain Org. Chem. 1991, 1, 215–272.
- 18. Prelog, V.; Schenker, K.; Günthardt, H. Helv. Chim. Acta 1952, 35, 1598–1615.
- 19. Cram, D. J.; Allinger, N. L. J. Am. Chem. Soc. 1956, 78, 2518–2524. 20. Cyclodecane-1,2-dione bishydrazone: 1 H NMR (CDCl₃): (*E,E*)-isomer (87%) δ 5.30 (br s, 4H, NH2), 2.53 (m, 4H, a-CH2), 1.67 (m, 4H, CH2), 1.32 (m, 4H, CH2), 1.16 (m, 4H, CH₂); (E,Z)-isomer (13%) δ 5.55 (br s, 2H, NH₂), 5.30 (br s, 2H, NH₂), 2.67 (m, 4H, α-CH₂), 1.67 (m, 4H, CH₂), 1.32 (m, 4H, CH₂), 1.16 (m, 4H, CH₂); ¹³C NMR (CDCl₃): (*E,E*)-isomer δ 152.6 (CN), 25.5, 24.3, 23.5, 20.9; (*E,Z*)-isomer δ 164.5, 151.5 (CN), 27.2, 25.8, 25.4, 24.6, 24.2, 23.6, 22.7, 21.1.
- 21. Mijs, W. J.; de Vries, K. S.; Westra, J. G. Rec. Trav. Chim. Pays-Bas 1968, 87, 580-584.
- 22. The ratio $4/4'$ amounts to about 50:50 in CDCl₃ and to 78: 22 in CD₃OD. Compound $\overline{4}$: ¹H NMR (CD₃OD): δ 4.90 (br s, 1H, OH), 3.83 (m, 1H, 6-H), 2.76 (d,d,d, δ] = 9.2 Hz, ³*J* = 3.7 Hz, 2H, 2-H, 10-H), 2.40 (d,d,d, 2 J = 15.7 Hz, 3 J = 8.3 Hz, 3 J' = 3.9 Hz, 2H, 2-H, 10-H), 2.10-1.45 (m, 12H, 3,4,5,7,8,9-H); ¹³C NMR (CD₃OD): δ 217.5 (C-1), 69.9 (C-6), 42.8 (C-2, C-10), 34.5, 24.3, 23.9 (C-3,4,5, 7,8,9). Compound $4'$: ¹H NMR (CD₃OD): δ 4.90 (br s 1H, OH), 4.07 (m, 1H, 6-H), 2.10–1.45 (m, 16H, 2,3,4, 5,7,8,9,10-H); 13C NMR (CD_3OD) : δ 103.5 (C-1), 76.6 (C-6), 41.7 (C-2, C-10), 34.6, 24.3, 23.9 (C-3,4,5,7,8,9).
- 23. Compound 5: Mp 173-174 °C. ¹H NMR (CD₃SOCD₃): δ 9.01 (s, 1H, NH), 6.20 (br s, 2H, NH2), 4.21 (m, 1H, 6-H), 3.61 (br s, 1H, OH), 2.43–2.07 (m, 4H, 2,10-H), 1.84–1.18 (m,12H, 3,4,5,7,8,9-H); ¹³C NMR (CD₃SOCD₃): δ 157.3 (CO), 151.1 (C-
- 1), 68.5 (C-6), 33.8, 32.2, 31.6, 29.3, 23.6, 22.1, 22.1, 19.8 (C-2,3,4,5,7,8,9,10).
24. Compound **6**: Mp 101–103 °C. ¹H NMR (CDCl₃): δ 3.91 (m, 1H, 8-H), 3.20 (m, 3H), 3.05 (m, 1H), 1.95 (m, 1H), 1.89 (m, 2H), 1.63 (m, 2H), 1.48 (m, 1H), 1.38 (m, 1H), 1.33 (m, 1H), 1.15 (m, 1H), 1.02 (m, 1H) [CH₂ groups], 1.48 (br s, 1H, OH). Broadening of the signals indicates that the ring dynamics are becoming slow at room temperature in terms of the NMR time scale; ¹³C NMR (CDCl₃): δ 160.1, 159.5 (C-3a, 11a), 69.8 (C-8), 33.7, 28.3, 27.2, 27.0, 26.1, 24.9, 19.5 (C-4,5,6,7,9,10,11).
- 25. Hutchins, R. O.; Hutchins, M. G.; Milewski, C. A. J. Chem. Soc. 1972, 37, 4190– 4192.
- 26. Compound 7: Mp 66 °C. ¹H NMR (CDCl₃): δ 5.40 (m, 2H, 7,8-H), 3.21 (m, 1H), 3.01 (m, 2H), 2.70 (m, 1H), 2.25 (m, 2H), 2.0-1.7 (m, 6H) [CH₂ groups]; ¹³C NMR $(CDCI₃)$: δ 160.7, 159.8 $(C-3a,11a)$, 130.7, 129.0 $(C-7,8)$, 31.3, 26.8, 25.2, 24.7, 23.8, 23.5 (C-4,5,6,9,10,11). ⁷⁷Se NMR (CDCl₃): δ 203.5.
- 27. See: Dale, J.; Ekeland, D.; Schaug, J. Chem. Commun. 1968, 1477–1479.
- 28. Compound 3: Colorless oil, bp₁₂ 110 °C; ¹H NMR (CDCl₃): δ 5.36 (m, 2H, 1,2-H), 2.28 (m, 4H, 3,10-H), 2.19 (m, 4H, 5,8-H), 1.57 (m, 4H, 4,9-H); ¹³C NMR (CDCl₃): δ 130.3 (C-1,2), 82.1 (C-6,7), 25.3, 23.9 (C-3,4,9,10), 18.1 (C-5,8).
- 29. House, H. O.; Nomura, G. S.; Van Derveer, D.; Wissinger, J. E. J. Org. Chem. 1986, 51, 2408–2416, and references therein.
- 30. Column chromatography ($SiO₂$, pentane) enables a simple separation of the mixture of 9 (35%, $R_f = 0.90$) and 2 (65%, $R_f = 0.50$). 9: ¹H NMR (CDCl₃): $\delta = 5.68$ (ddt, ${}^{3}_{\text{trans}}$ = 17.0 Hz, ${}^{3}_{\text{Jcs}}$ = 10.3 Hz, 3 J' = 6.7 Hz, 1H, 9-H), 4.97 (m, 1H, 3-H), 4.81 (m, 1H, 10-H), 4.52 (m, 2H, 1-H), 2.00-1.85 (m, 4H 4,8-H), 1.37–1.20 (m, 6H, 5,6,7-H). ¹³C NMR (CDCl₃): δ = 208.6 (C-2), 138.9 (C-9), 114.1 (C-10), 89.9 (C-3), 74.4 (C-1), 33.6 (C-8), 28.9, 28.7, 28.5, 28.1 (C-4,5,6,7).
- 31. See for example: Snider, B. B.; Killinger, T. A. J. Org. Chem. 1978, 43, 2161–2164.
- 32. Anderson, A. G.; Nelson, J. A. J. Am. Chem. Soc. 1951, 73, 232–235.